
CSCC09 Week 7-8 Notes
1

Securing the web architecture means securing:
- The network
- The operating system
- The web server (Apache for instance)
- The administration server (SSH for instance)
- The database (Oracle for instance)
- The web application ← Our focus

Insufficient Transport Layer Protection a.k.a the need for HTTPs:
- While hackers can try to brute force a user’s password/session ID, a more common and

better method is to steal the user’s password or session ID. Brute forcing usually doesn’t
work.

- Hackers can eavesdrop and/or tamper with the messages sent back and forth between
your browser and the server. This is known as ​man in the middle attack (MitM) attack​.

- MitM attacks consist of sitting between the connection of two parties and either
observing or manipulating traffic. This could be through interfering with legitimate
networks or creating fake networks that the attacker controls. Compromised traffic is
then stripped of any encryption in order to steal, change or reroute that traffic to the
attacker’s destination of choice (such as a phishing log-in site). Because attackers may
be silently observing or re-encrypting intercepted traffic to its intended source once
recorded or edited, it can be a difficult attack to spot.

- A generic solution we can use is to use HTTPS over HTTP.
- Because HTTP was originally designed as a clear text protocol, it is vulnerable to man in

the middle attacks. By including SSL/TLS encryption, HTTPS prevents data sent over
the internet from being intercepted and read by a third party. Through public-key
cryptography and the SSL/TLS handshake, an encrypted communication session can be
securely set up between two parties via the creation of a shared secret key.

- Hypertext transfer protocol secure (HTTPS) is the secure version of HTTP, which is the
primary protocol used to send data between a web browser and a website. HTTPS is
encrypted in order to increase security of data transfer. This is particularly important
when users transmit sensitive data, such as by logging into a bank account, email
service, or health insurance provider.

- HTTPS = HTTP + TLS
- HTTPS uses an encryption protocol to encrypt communications. This protocol is called

Transport Layer Security (TLS), although formerly it was known as Secure Sockets
Layer (SSL). TLS secures communications by using an asymmetric public key
infrastructure. This type of security system uses two different keys to encrypt
communications between two parties:

1. The private key: This key is controlled by the owner of a website and it’s kept, as
the reader may have speculated, private. This key lives on a web server and is
used to decrypt information encrypted by the public key.

2. The public key: This key is available to everyone who wants to interact with the
server in a way that’s secure. Information that’s encrypted by the public key can
only be decrypted by the private key.

- HTTPS includes robust authentication via the SSL/TLS protocol. A website’s SSL/TLS
certificate includes a public key that a web browser can use to confirm that documents
sent by the server have been digitally signed by someone in possession of the
corresponding private key. If the server’s certificate has been signed by a publicly trusted
certificate authority (CA)​, the browser will accept that any identifying information
included in the certificate has been validated by a trusted third party.

- Note:​ Self-signed certificates are not trusted by your browser.
- Your browser trusts many CAs by default.

CSCC09 Week 7-8 Notes
2

- Transport Layer Security provides:
1. confidentiality: end-to-end secure channel
2. integrity: authentication handshake

- HTTPS prevents websites from having their information broadcast in a way that’s easily
viewed by anyone snooping on the network. When information is sent over regular
HTTP, the information is broken into packets of data that can be easily “sniffed” using
free software. This makes communication over an unsecure medium, such as public
Wi-Fi, highly vulnerable to interception. In fact, all communications that occur over HTTP
occur in plain text, making them highly accessible to anyone with the correct tools, and
vulnerable to on-path attacks. With HTTPS, traffic is encrypted such that even if the
packets are sniffed or otherwise intercepted, they will come across as nonsensical
characters.

- HTTPS protects any data send back and forth including:
- login and password
- session ID

- HTTPS must be used during the entire session. This is because of ​mixed-content
attacks​. ​Mixed-content​ happens when an HTTPS page contains elements such as
ajax, js, image, video, css, etc that is served with HTTP and an HTTPS page transfers
control to another HTTP page within the same domain. Then, the authentication cookie
will be sent over HTTP.

- In addition, we can create cookies with the secure flag. A cookie with the Secure
attribute is sent to the server only with an encrypted request over the HTTPS protocol,
and therefore can't easily be accessed by a man-in-the-middle attacker. Insecure sites,
with http: in the URL, can't set cookies with the Secure attribute. However, do not
assume that Secure prevents all access to sensitive information in cookies.
I.e. The Secure attribute makes it so that the cookie will be sent over HTTPS exclusively
and will prevent authentication cookies from leaking in case of mixed-content.

- Do/Don't with HTTPS:
- Always use HTTPS exclusively in production.
- Always have a valid and signed certificate (no self-signed cert).
- Always avoid using absolute URL (mixed-content).
- Always use a secure cookie flag with an authentication cookie.

- Note:​ HTTPS protects against man in the middle attacks but can’t protect against
hackers who are in your browser or are on the server.

- Other types of vulnerabilities:

Incomplete Mediation:
- Occurs when the application accepts bad/invalid/malicious data from the frontend and

that data causes issues.
I.e. It occurs when failure to perform “sanity checks” on data can lead to random or
carefully planned flaws.

- Data coming from the frontend cannot be trusted.
- Sensitive operations must be done on the backend.

Frontend Vulnerabilities Backend Vulnerabilities

Content Spoofing Incomplete mediation

Cross-Site Scripting Information leakage

Cross-site Request forgery SQL injection

CSCC09 Week 7-8 Notes
3

Information Leakage:
- Information leakage​ happens whenever a system that is designed to be closed to an

eavesdropper reveals some information to unauthorized parties nonetheless.
I.e. Information leakage occurs when secret information correlates with, or can be
correlated with, observable information.

- In its most common form, information leakage is the result of one or more of the
following conditions:

1. A failure to scrub out HTML/script comments containing sensitive information.
2. Improper application or server configurations.
3. Differences in page responses for valid vs. invalid data.

- Sensitive information may be present within HTML comments, error messages, source
code, or left in plain sight, and there are many ways a website can be coaxed into
revealing this type of information. While information leakage doesn't necessarily
represent a security breach, it gives an attacker useful guidance for future exploitation.

- A solution to information leakage is to use authentication (I.e. Who are the authorized
users?) and to use authorization (I.e. Who can access what and how?).

SQL Injection:
- SQL injection​ is a type of an injection attack that makes it possible to execute malicious

SQL statements. These statements control a database server behind a web application.
Attackers can use SQL injection vulnerabilities to bypass application security measures.
They can go around authentication and authorization of a web page or web application
and retrieve the content of the entire SQL/NoSQL database. They can also use SQL
injection to add, modify, and delete records in the database.

- An SQL injection usually occurs when you ask a user for input and the user gives you an
SQL statement that you will unknowingly run on your database.

Content Spoofing:
- Content spoofing​ allows the end user of the vulnerable web application to spoof or

modify the actual content on the web page. The user might use the security loopholes in
the website to inject the content that he/she wishes to the target website. When an
application does not properly handle user supplied data, an attacker can supply content
to a web application, typically via a parameter value, that is reflected back to the user.

- An attacker can inject HTML tags in the page. They will add illegitimate content to the
webpage (ads most of the time).

- A generic solution is to validate data inserted in the DOM.
Cross-Site Scripting (XSS):

- Cross-Site Scripting (XSS) attacks​ target scripts embedded in a page that are
executed on the client-side rather than on the server-side. Cross-site scripting is one of
the most common application-layer web attacks. XSS in itself is a threat that is brought
about by the internet security weaknesses of client-side scripting languages, such as
HTML and JavaScript. The concept of XSS is to manipulate client-side scripts of a web
application to execute in the manner desired by the malicious user. Such a manipulation
can embed a script in a page that can be executed every time the page is loaded, or
whenever an associated event is performed.

- Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are
injected into otherwise benign and trusted websites. XSS attacks occur when an attacker
uses a web application to send malicious code, generally in the form of a browser side
script, to a different end user. Flaws that allow these attacks to succeed are quite
widespread and occur anywhere a web application uses input from a user within the
output it generates without validating or encoding it.

- An attacker can use XSS to send a malicious script to an unsuspecting user. The end
user’s browser has no way to know that the script should not be trusted, and will execute

CSCC09 Week 7-8 Notes
4

the script. Because it thinks the script came from a trusted source, the malicious script
can access any cookies, session tokens, or other sensitive information retained by the
browser and used with that site. These scripts can even rewrite the content of the HTML
page.

- An attacker can inject arbitrary javascript code in the page that will be executed by the
browser. Then, the attacker can:

- Inject illegitimate content in the page (same as content spoofing)
- Perform illegitimate HTTP requests through Ajax (same as a CSRF attack)
- Steal Session ID from the cookie
- Steal user’s login/password by modifying the page to forge a perfect scam

- Some variations on XSS attacks are:
1. Reflected XSS:​ Malicious data sent to the backend are immediately sent back to

the frontend to be inserted into the DOM.
2. Stored XSS:​ Malicious data sent to the backend are stored in the database and

later-on sent back to the frontend to be inserted into the DOM.
3. DOM-based attack:​ Malicious data are manipulated in the frontend (javascript)

and inserted into the DOM.
- A generic solution is to validate data inserted in the DOM.
- Another solution is to use the HttpOnly cookie flag. This makes it so that the cookie is

not readable/writable from the frontend. This prevents the authentication cookie from
being leaked when an XSS attack occurs.
Note:​ The name is a little misleading. HttpOnly has nothing to do with HTTP or HTTPS.

Cross-Site Request Forgery (CSRF):
- The ​same origin policy​ is a critical security mechanism that restricts how a document

or script loaded from one origin can interact with a resource from another origin. It helps
isolate potentially malicious documents, reducing possible attack vectors. Two URLs
have the same ​origin​ if the protocol, port, and host are the same for both.
This means https://api.mydomain.com and https://mydomain.com are actually different
origins and thus impacted by same-origin policy. In a similar way, http://localhost:9000
and http://localhost:8080 are also different origins.

- Note:​ The path or query parameters are ignored when considering the origin.
- Note:​ Internet Explorer has an exception to the definition of origin. IE treats all ports the

same way. This is non-standard and no other browser behaves this way.
- Elements under control of the same-origin policy include:

- Ajax requests
- Form actions

- Elements not under control of the same-origin policy include:
- Javascript scripts
- CSS
- Images, video, sound
- Plugins

- Cross-Site Request Forgery (CSRF)​ is an attack that forces an end user to execute
unwanted actions on a web application in which they’re currently authenticated. CSRFs
are typically conducted using malicious social engineering, such as an email or link that
tricks the victim into sending a forged request to a server. If the victim is a normal user, a
successful CSRF attack can force the user to perform state changing requests like
transferring funds, changing their email address, and so forth. If the victim is an
administrative account, CSRF can compromise the entire web application.

CSCC09 Week 7-8 Notes
5

- Consider this example:
Suppose you log into https://bank.com and a cookie is stored. While logged in, suppose
you unknowingly browse a malicious website. Without the same origin policy, the
malicious website could make authenticated malicious AJAX calls to
https://bank.com/api to POST /withdraw even though the hacker website doesn’t have
direct access to the bank’s cookies.

This is because many websites use cookies to keep track of authentication or session
info. Those cookies are bound to a certain domain when they are created. On every
HTTP call to that domain, the browser will attach the cookies that were created for that
domain. Furthermore,the browser automatically attaches any cookies bound to
https://bank.com for any HTTP calls to that domain, including AJAX calls from the
malicious website. By restricting HTTP calls to only ones to the same origin, the
same-origin policy closes some hacker backdoors such as around CSRF attacks.

- Cross-origin resource sharing (CORS)​ is a security mechanism that allows a web
page from one origin to access a resource with a different domain. CORS is a relaxation
of the same-origin policy implemented in modern browsers. Without features like CORS,
websites are restricted to accessing resources from the same origin through what is
known as same-origin policy.

- There are legitimate reasons for a website to make cross-origin HTTP requests.
A single-page app at https://mydomain.com could need to make AJAX calls to
https://api.mydomain.com.
Furthermore, some websites, such as Reddit, allow users to embed images from other
websites, like Imgur.

- There are 2 types of CORS requests:
1. Preflighted Requests:
- For Ajax and HTTP request methods that can modify data, the specification

mandates that browsers preflight the request, solicit supported methods from the
server with an HTTP OPTIONS request method, and then, upon approval from
the server, send the actual request with the actual HTTP request method.
I.e. When performing certain types of cross-domain Ajax requests, modern
browsers that support CORS will initiate an extra "preflight" request to determine
whether they have permission to perform the action. Cross-origin requests are
preflighted this way because they may have implications to user data.

- A ​preflighted request​ is a CORS request where the browser is required to send
a preflight request (a preliminary check) before sending the request being
preflighted to ask the server permission if the original CORS request can
proceed.

- E.g.
This is the preflight request:
OPTIONS /
Host: service.example.com
Origin: http://www.example.com
Access-Control-Request-Method: PUT

If service.example.com is willing to accept the action, it may respond with the
following headers:

Access-Control-Allow-Origin: http://www.example.com
Access-Control-Allow-Methods: PUT, DELETE

CSCC09 Week 7-8 Notes
6

Then, the browser will then make the actual request. If service.example.com
does not accept cross-site requests from this origin then it will respond with error
to the OPTIONS request and the browser will not make the actual request.

2. Simple Requests:
- A ​simple request​ is a CORS request that doesn’t require a preflight request

before being initiated.
- JSON with Padding (JSONP)​ is another way to circumvent same-origin policy.

JSONP is a historical JavaScript technique for requesting data by loading a <script>
element. Because JSONP is vulnerable to CSRF attacks, it is very dangerous to use and
has been replaced with CORS.

- We can protect legitimate requests with a CSRF token.
- We can also prevent CSRF attacks using the SameSite cookie flag. If you’re using the

SameSite flag, the cookie will not be sent over cross-site requests. This prevents
forwarding the authentication cookie over cross origin requests.

